Search results

Search for "helical fibers" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • to the macroscale. Due to their ability to store mechanical energy and to optimize the accessible surface area, helical shapes contribute particularly to motion-driven processes and structural reinforcement. Due to these special features, helical fibers have become highly attractive for
  • were prepared by wet-spinning and coagulation in an ethanol bath. Thereby, no toxic components were introduced into the wet-spun chitosan fibers. After drying, the helical fibers had a diameter of approximately 130 µm. Scanning electron microscopy analysis of wet-spun helices revealed that the magnetic
  • helical chitosan microfibers exhibited an average Young’s modulus of 14 MPa. By taking advantage of the magnetic properties of the feedstock solution, the production of the helical fibers could be automated. The fabrication of the helical fibers was achieved by utilizing the magnetic properties of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • system 6'. The 1:1 DCM/MeOH solution of 6' was established much faster than the one of 1' in order to form the highly regular, exclusively left-handed, helical fibers, which can be observed in AFM (Figure 6). The fibrillar structures show single object widths of about 20 ± 2 nm (AFM, not tip corrected
  • -contained and persistent (Figure 7). Not only do they lack the left-handed helical superstructure observed for the latter, but also the filaments containing molecules 6 seem to be more prone to self-assemble into higher structures (fibers and bundles), whereas the helical fibers of the hybrid 6', are more
  • ) level were performed on isolated, and bundles of, oligothiophene–oligopeptide molecules for the case of 1'. The PEO units were omitted in the calculations for simplification. The models were constructed in vacuum. Accounting for the unexpected formation of helical fibers in the kinked state of hybrid 1
PDF
Album
Review
Published 05 Sep 2011
Other Beilstein-Institut Open Science Activities